A previously uncharacterized, nonphotosynthetic member of the Chromatiaceae is the primary CO2-fixing constituent in a self-regenerating biocathode.
نویسندگان
چکیده
Biocathode extracellular electron transfer (EET) may be exploited for biotechnology applications, including microbially mediated O2 reduction in microbial fuel cells and microbial electrosynthesis. However, biocathode mechanistic studies needed to improve or engineer functionality have been limited to a few select species that form sparse, homogeneous biofilms characterized by little or no growth. Attempts to cultivate isolates from biocathode environmental enrichments often fail due to a lack of some advantage provided by life in a consortium, highlighting the need to study and understand biocathode consortia in situ. Here, we present metagenomic and metaproteomic characterization of a previously described biocathode biofilm (+310 mV versus a standard hydrogen electrode [SHE]) enriched from seawater, reducing O2, and presumably fixing CO2 for biomass generation. Metagenomics identified 16 distinct cluster genomes, 15 of which could be assigned at the family or genus level and whose abundance was roughly divided between Alpha- and Gammaproteobacteria. A total of 644 proteins were identified from shotgun metaproteomics and have been deposited in the the ProteomeXchange with identifier PXD001045. Cluster genomes were used to assign the taxonomic identities of 599 proteins, with Marinobacter, Chromatiaceae, and Labrenzia the most represented. RubisCO and phosphoribulokinase, along with 9 other Calvin-Benson-Bassham cycle proteins, were identified from Chromatiaceae. In addition, proteins similar to those predicted for iron oxidation pathways of known iron-oxidizing bacteria were observed for Chromatiaceae. These findings represent the first description of putative EET and CO2 fixation mechanisms for a self-regenerating, self-sustaining multispecies biocathode, providing potential targets for functional engineering, as well as new insights into biocathode EET pathways using proteomics.
منابع مشابه
Complete Genome Sequence of Marinobacter sp. CP1, Isolated from a Self-Regenerating Biocathode Biofilm
Marinobacter sp. CP1 was isolated from a self-regenerating and self-sustaining biocathode biofilm that can fix CO2 and generate electric current. We present the complete genome sequence of this strain, which consists of a circular 4.8-Mbp chromosome, to understand the mechanism of extracellular electron transfer in a microbial consortium.
متن کاملMetaproteomic evidence of changes in protein expression following a change in electrode potential in a robust biocathode microbiome.
Microorganisms that respire electrodes may be exploited for biotechnology applications if key pathways for extracellular electron transfer can be identified and manipulated through bioengineering. To determine whether expression of proposed Biocathode-MCL extracellular electron transfer proteins are changed by modulating electrode potential without disrupting the relative distribution of microb...
متن کاملRelative abundance of ‘Candidatus Tenderia electrophaga’ is linked to cathodic current in an aerobic biocathode community
Biocathode microbial communities are proposed to catalyse a range of useful reactions. Unlike bioanodes, model biocathode organisms have not yet been successfully cultivated in isolation highlighting the need for culture-independent approaches to characterization. Biocathode MCL (Marinobacter, Chromatiaceae, Labrenzia) is a microbial community proposed to couple CO2 fixation to extracellular el...
متن کاملOn Marginal Automorphisms of a Group Fixing the Certain Subgroup
Let W be a variety of groups defined by a set W of laws and G be a finite p-group in W. The automorphism α of a group G is said to bea marginal automorphism (with respect to W), if for all x ∈ G, x−1α(x) ∈ W∗(G), where W∗(G) is the marginal subgroup of G. Let M,N be two normalsubgroups of G. By AutM(G), we mean the subgroup of Aut(G) consistingof all automorphisms which centralize G/M. AutN(G) ...
متن کاملMetatranscriptomics Supports the Mechanism for Biocathode Electroautotrophy by “Candidatus Tenderia electrophaga”
Biocathodes provide a stable electron source to drive reduction reactions in electrotrophic microbial electrochemical systems. Electroautotrophic biocathode communities may be more robust than monocultures in environmentally relevant settings, but some members are not easily cultivated outside the electrode environment. We previously used metagenomics and metaproteomics to propose a pathway for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied and environmental microbiology
دوره 81 2 شماره
صفحات -
تاریخ انتشار 2015